• Mathematics

A Course in Convexity


Author: Alexander Barvinok
Publisher: American Mathematical Soc.
ISBN: 0821829688
Category: Mathematics
Page: 366
View: 4435
Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.

    • Mathematics

A Course in Convexity


Author: Alexander Barvinok
Publisher: American Mathematical Soc.
ISBN: 9780821829684
Category: Mathematics
Page: 366
View: 4445
Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.

    • Mathematics

A Course in Convexity


Author: Alexander Barvinok
Publisher: American Mathematical Soc.
ISBN: 0821872311
Category: Mathematics
Page: 366
View: 313

    • Mathematics

Convexity


Author: Roger Webster
Publisher: Oxford University Press
ISBN: 9780198531470
Category: Mathematics
Page: 444
View: 4569
A wide-ranging introduction to convex sets and functions, suitable for final-year undergraduates and also graduate students.

    • Mathematics

A Course in Robust Control Theory

A Convex Approach
Author: Geir E. Dullerud,Fernando Paganini
Publisher: Springer Science & Business Media
ISBN: 1475732902
Category: Mathematics
Page: 419
View: 9754
During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques.

    • Mathematics

Convexity

An Analytic Viewpoint
Author: Barry Simon
Publisher: Cambridge University Press
ISBN: 1139497596
Category: Mathematics
Page: N.A
View: 4156
Convexity is important in theoretical aspects of mathematics and also for economists and physicists. In this monograph the author provides a comprehensive insight into convex sets and functions including the infinite-dimensional case and emphasizing the analytic point of view. Chapter one introduces the reader to the basic definitions and ideas that play central roles throughout the book. The rest of the book is divided into four parts: convexity and topology on infinite-dimensional spaces; Loewner's theorem; extreme points of convex sets and related issues, including the Krein–Milman theorem and Choquet theory; and a discussion of convexity and inequalities. The connections between disparate topics are clearly explained, giving the reader a thorough understanding of how convexity is useful as an analytic tool. A final chapter overviews the subject's history and explores further some of the themes mentioned earlier. This is an excellent resource for anyone interested in this central topic.

    • Mathematics

A Course in Multivariable Calculus and Analysis


Author: Sudhir R. Ghorpade,Balmohan V. Limaye
Publisher: Springer Science & Business Media
ISBN: 1441916210
Category: Mathematics
Page: 475
View: 4625
This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

    • Mathematics

Convexity


Author: H. G. Eggleston
Publisher: CUP Archive
ISBN: 9780521077347
Category: Mathematics
Page: 141
View: 4441
This account of convexity includes the basic properties of convex sets in Euclidean space and their applications, the theory of convex functions and an outline of the results of transformations and combinations of convex sets. It will be useful for those concerned with the many applications of convexity in economics, the theory of games, the theory of functions, topology, geometry and the theory of numbers.

    • Mathematics

Linear Algebra in Action


Author: Harry Dym
Publisher: American Mathematical Soc.
ISBN: 9780821838136
Category: Mathematics
Page: 541
View: 770
Linear algebra permeates mathematics, perhaps more so than any other single subject. It plays an essential role in pure and applied mathematics, statistics, computer science, and many aspects of physics and engineering. This book conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author wishes he had been taught as a graduate student. Roughly the first third of the book covers the basic material of a first course in linear algebra. The remaining chapters are devoted to applications drawn from vector calculus, numerical analysis, control theory, complex analysis, convexity and functional analysis. In particular, fixed point theorems, extremal problems, matrix equations, zero location and eigenvalue location problems, and matrices with nonnegative entries are discussed. Appendices on useful facts from analysis and supplementary information from complex function theory are also provided for the convenience of the reader. The book is suitable as a text or supplementary reference for a variety of courses on linear algebra and its applications, as well as for self-study.

    • Mathematics

A Course in Analysis

Vol. II: Differentiation and Integration of Functions of Several Variables, Vector Calculus
Author: Niels Jacob,Kristian P Evans
Publisher: World Scientific Publishing Company
ISBN: 9813140984
Category: Mathematics
Page: 788
View: 4519
This is the second volume of "A Course in Analysis" and it is devoted to the study of mappings between subsets of Euclidean spaces. The metric, hence the topological structure is discussed as well as the continuity of mappings. This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in particular to geometry (parametric curves and surfaces, convexity), but topics such as extreme values and Lagrange multipliers, or curvilinear coordinates are considered too. On the more abstract side results such as the Stone–Weierstrass theorem or the Arzela–Ascoli theorem are proved in detail. The first part ends with a rigorous treatment of line integrals. The second part handles iterated and volume integrals for real-valued functions. Here we develop the Riemann (–Darboux–Jordan) theory. A whole chapter is devoted to boundaries and Jordan measurability of domains. We also handle in detail improper integrals and give some of their applications. The final part of this volume takes up a first discussion of vector calculus. Here we present a working mathematician's version of Green's, Gauss' and Stokes' theorem. Again some emphasis is given to applications, for example to the study of partial differential equations. At the same time we prepare the student to understand why these theorems and related objects such as surface integrals demand a much more advanced theory which we will develop in later volumes. This volume offers more than 260 problems solved in complete detail which should be of great benefit to every serious student.

    • Graph labelings

Introduction to the Theory of Valuations


Author: Semyon Alesker
Publisher: American Mathematical Soc.
ISBN: 1470443597
Category: Graph labelings
Page: 83
View: 7005
Theory of valuations on convex sets is a classical part of convex geometry which goes back at least to the positive solution of the third Hilbert problem by M. Dehn in 1900. Since then the theory has undergone a multifaceted development. The author discusses some of Hadwiger's results on valuations on convex compact sets that are continuous in the Hausdorff metric. The book also discusses the Klain-Schneider theorem as well as the proof of McMullen's conjecture, which led subsequently to many further applications and advances in the theory. The last section gives an overview of more recent developments in the theory of translation-invariant continuous valuations, some of which turn out to be useful in integral geometry. This book grew out of lectures that were given in August 2015 at Kent State University in the framework of the NSF CBMS conference “Introduction to the Theory of Valuations on Convex Sets”. Only a basic background in general convexity is assumed.

    • Mathematics

Convex Functions and Their Applications

A Contemporary Approach
Author: Constantin P. Niculescu,Lars-Erik Persson
Publisher: Springer
ISBN: 3319783378
Category: Mathematics
Page: 415
View: 7822
Thorough introduction to an important area of mathematics Contains recent results Includes many exercises

    • Business & Economics

Foundations of Optimization


Author: Osman Güler
Publisher: Springer Science & Business Media
ISBN: 9780387684079
Category: Business & Economics
Page: 442
View: 9736
This book covers the fundamental principles of optimization in finite dimensions. It develops the necessary material in multivariable calculus both with coordinates and coordinate-free, so recent developments such as semidefinite programming can be dealt with.

    • Mathematics

Combinatorial Convexity and Algebraic Geometry


Author: Günter Ewald
Publisher: Springer Science & Business Media
ISBN: 1461240441
Category: Mathematics
Page: 374
View: 3217
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

    • Mathematics

A Course in Algebra


Author: Ėrnest Borisovich Vinberg
Publisher: American Mathematical Soc.
ISBN: 9780821834138
Category: Mathematics
Page: 511
View: 4872
This is a comprehensive textbook on modern algebra written by an internationally renowned specialist. It covers material traditionally found in advanced undergraduate and basic graduate courses and presents it in a lucid style. The author includes almost no technically difficult proofs, and reflecting his point of view on mathematics, he tries wherever possible to replace calculations and difficult deductions with conceptual proofs and to associate geometric images to algebraic objects. The effort spent on the part of students in absorbing these ideas will pay off when they turn to solving problems outside of this textbook.Another important feature is the presentation of most topics on several levels, allowing students to move smoothly from initial acquaintance with the subject to thorough study and a deeper understanding. Basic topics are included, such as algebraic structures, linear algebra, polynomials, and groups, as well as more advanced topics, such as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. Some applications of linear algebra and group theory to physics are discussed. The book is written with extreme care and contains over 200 exercises and 70 figures. It is ideal as a textbook and also suitable for independent study for advanced undergraduates and graduate students.

    • Calculus

A Course of Modern Analysis

An Introduction to the General Theory of Infinite Series and of Analytic Functions, with an Account of the Principal Transcendental Functions
Author: Edmund Taylor Whittaker
Publisher: N.A
ISBN: N.A
Category: Calculus
Page: 378
View: 1972

    • Mathematics

Convexity and Optimization in Rn


Author: Leonard D. Berkovitz
Publisher: John Wiley & Sons
ISBN: 0471461660
Category: Mathematics
Page: 280
View: 6137
A comprehensive introduction to convexity and optimization in Rn This book presents the mathematics of finite dimensional constrained optimization problems. It provides a basis for the further mathematical study of convexity, of more general optimization problems, and of numerical algorithms for the solution of finite dimensional optimization problems. For readers who do not have the requisite background in real analysis, the author provides a chapter covering this material. The text features abundant exercises and problems designed to lead the reader to a fundamental understanding of the material. Convexity and Optimization in Rn provides detailed discussion of: * Requisite topics in real analysis * Convex sets * Convex functions * Optimization problems * Convex programming and duality * The simplex method A detailed bibliography is included for further study and an index offers quick reference. Suitable as a text for both graduate and undergraduate students in mathematics and engineering, this accessible text is written from extensively class-tested notes.

    • Mathematics

Combinatorics and Complexity of Partition Functions


Author: Alexander Barvinok
Publisher: Springer
ISBN: 3319518291
Category: Mathematics
Page: 303
View: 6646
Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.

    • Mathematics

A Course in Multivariable Calculus and Analysis


Author: Sudhir R. Ghorpade,Balmohan V. Limaye
Publisher: Springer Science & Business Media
ISBN: 1441916210
Category: Mathematics
Page: 475
View: 1074
This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

    • Mathematics

Geometry of Convex Sets


Author: I. E. Leonard,J. E. Lewis
Publisher: John Wiley & Sons
ISBN: 111902269X
Category: Mathematics
Page: 336
View: 8488
A gentle introduction to the geometry of convex sets in n-dimensional space Geometry of Convex Sets begins with basic definitions of the concepts of vector addition and scalar multiplication and then defines the notion of convexity for subsets of n-dimensional space. Many properties of convex sets can be discovered using just the linear structure. However, for more interesting results, it is necessary to introduce the notion of distance in order to discuss open sets, closed sets, bounded sets, and compact sets. The book illustrates the interplay between these linear and topological concepts, which makes the notion of convexity so interesting. Thoroughly class-tested, the book discusses topology and convexity in the context of normed linear spaces, specifically with a norm topology on an n-dimensional space. Geometry of Convex Sets also features: An introduction to n-dimensional geometry including points; lines; vectors; distance; norms; inner products; orthogonality; convexity; hyperplanes; and linear functionals Coverage of n-dimensional norm topology including interior points and open sets; accumulation points and closed sets; boundary points and closed sets; compact subsets of n-dimensional space; completeness of n-dimensional space; sequences; equivalent norms; distance between sets; and support hyperplanes · Basic properties of convex sets; convex hulls; interior and closure of convex sets; closed convex hulls; accessibility lemma; regularity of convex sets; affine hulls; flats or affine subspaces; affine basis theorem; separation theorems; extreme points of convex sets; supporting hyperplanes and extreme points; existence of extreme points; Krein–Milman theorem; polyhedral sets and polytopes; and Birkhoff’s theorem on doubly stochastic matrices Discussions of Helly’s theorem; the Art Gallery theorem; Vincensini’s problem; Hadwiger’s theorems; theorems of Radon and Caratheodory; Kirchberger’s theorem; Helly-type theorems for circles; covering problems; piercing problems; sets of constant width; Reuleaux triangles; Barbier’s theorem; and Borsuk’s problem Geometry of Convex Sets is a useful textbook for upper-undergraduate level courses in geometry of convex sets and is essential for graduate-level courses in convex analysis. An excellent reference for academics and readers interested in learning the various applications of convex geometry, the book is also appropriate for teachers who would like to convey a better understanding and appreciation of the field to students. I. E. Leonard, PhD, was a contract lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta. The author of over 15 peer-reviewed journal articles, he is a technical editor for the Canadian Applied Mathematical Quarterly journal. J. E. Lewis, PhD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004 as well as the PIMS Education Prize in 2002.