• Mathematics

Foundations of Contemporary Mathematics

With Applications in the Social and Management Sciences
Author: Louis Osgood Kattsoff,Albert J. Simone
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: 553
View: 8097

    • Philosophy

Philosophy of Mathematics


Author: Øystein Linnebo
Publisher: Princeton University Press
ISBN: 1400885248
Category: Philosophy
Page: 216
View: 8719
A sophisticated, original introduction to the philosophy of mathematics from one of its leading contemporary scholars Mathematics is one of humanity's most successful yet puzzling endeavors. It is a model of precision and objectivity, but appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic yet accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Written by Øystein Linnebo, one of the world's leading scholars on the subject, the book introduces all of the classical approaches to the field, including logicism, formalism, intuitionism, empiricism, and structuralism. It also contains accessible introductions to some more specialized issues, such as mathematical intuition, potential infinity, the iterative conception of sets, and the search for new mathematical axioms. The groundbreaking work of German mathematician and philosopher Gottlob Frege, one of the founders of analytic philosophy, figures prominently throughout the book. Other important thinkers whose work is introduced and discussed include Immanuel Kant, John Stuart Mill, David Hilbert, Kurt Gödel, W. V. Quine, Paul Benacerraf, and Hartry H. Field. Sophisticated but clear and approachable, this is an essential introduction for all students and teachers of philosophy, as well as mathematicians and others who want to understand the foundations of mathematics.

    • Calculus

Cultural Foundations of Mathematics

The Nature of Mathematical Proof and the Transmission of the Calculus from India to Europe in the 16th C. CE
Author: C. K. Raju
Publisher: Pearson Education India
ISBN: 9788131708712
Category: Calculus
Page: 477
View: 2386
The Volume Examines, In Depth, The Implications Of Indian History And Philosophy For Contemporary Mathematics And Science. The Conclusions Challenge Current Formal Mathematics And Its Basis In The Western Dogma That Deduction Is Infallible (Or That It Is Less Fallible Than Induction). The Development Of The Calculus In India, Over A Thousand Years, Is Exhaustively Documented In This Volume, Along With Novel Insights, And Is Related To The Key Sources Of Wealth-Monsoon-Dependent Agriculture And Navigation Required For Overseas Trade - And The Corresponding Requirement Of Timekeeping. Refecting The Usual Double Standard Of Evidence Used To Construct Eurocentric History, A Single, New Standard Of Evidence For Transmissions Is Proposed. Using This, It Is Pointed Out That Jesuits In Cochin, Following The Toledo Model Of Translation, Had Long-Term Opportunity To Transmit Indian Calculus Texts To Europe. The European Navigational Problem Of Determining Latitude, Longitude, And Loxodromes, And The 1582 Gregorian Calendar-Reform, Provided Ample Motivation. The Mathematics In These Earlier Indian Texts Suddenly Starts Appearing In European Works From The Mid-16Th Century Onwards, Providing Compelling Circumstantial Evidence. While The Calculus In India Had Valid Pramana, This Differed From Western Notions Of Proof, And The Indian (Algorismus) Notion Of Number Differed From The European (Abacus) Notion. Hence, Like Their Earlier Difficulties With The Algorismus, Europeans Had Difficulties In Understanding The Calculus, Which, Like Computer Technology, Enhanced The Ability To Calculate, Albeit In A Way Regarded As Epistemologically Insecure. Present-Day Difficulties In Learning Mathematics Are Related, Via Phylogeny Is Ontogeny , To These Historical Difficulties In Assimilating Imported Mathematics. An Appendix Takes Up Further Contemporary Implications Of The New Philosophy Of Mathematics For The Extension Of The Calculus, Which Is Needed To Handle The Infinities Arising In The Study Of Shock Waves And The Renormalization Problem Of Quantum Field Theory.

    • Philosophy

The Philosophy of Mathematical Practice


Author: Paolo Mancosu
Publisher: Oxford University Press on Demand
ISBN: 0199296456
Category: Philosophy
Page: 447
View: 6477
This book gives a coherent and unified presentation of a new direction of work in philosophy of mathematics. This new approach in philosophy of mathematics requires extensive attention to mathematical practice and provides philosophical analyses of important novel characteristics of contemporary (twentieth century) mathematics and of many aspects of mathematical activity-such as visualization, explanation, understanding etc.-- which escape purely formal logicaltreatment.The book consists of a lengthy introduction by the editor and of eight chapters written by some of the very best scholars in this area. Each chapter consists of a short introduction to the general topic of the chapter and of a longer research article in the very same area. Theeight topics selected represent a broad spectrum of the contemporary philosophical reflection on different aspects of mathematical practice: Diagrammatic reasoning and representational systems; Visualization; Mathematical Explanation; Purity of Methods; Mathematical Concepts; Philosophical relevance of category theory; Philosophical aspects of computer science in mathematics; Philosophical impact of recent developments in mathematical physics.

    • Mathematics

An Introduction to the Philosophy of Mathematics


Author: Mark Colyvan
Publisher: Cambridge University Press
ISBN: 0521826020
Category: Mathematics
Page: 188
View: 2118
This introduction to the philosophy of mathematics focuses on contemporary debates in an important and central area of philosophy. The reader is taken on a fascinating and entertaining journey through some intriguing mathematical and philosophical territory, including such topics as the realism/anti-realism debate in mathematics, mathematical explanation, the limits of mathematics, the significance of mathematical notation, inconsistent mathematics and the applications of mathematics. Each chapter has a number of discussion questions and recommended further reading from both the contemporary literature and older sources. Very little mathematical background is assumed and all of the mathematics encountered is clearly introduced and explained using a wide variety of examples. The book is suitable for an undergraduate course in philosophy of mathematics and, more widely, for anyone interested in philosophy and mathematics.

    • Science

Philosophy of Mathematics

Selected Readings
Author: Paul Benacerraf,Hilary Putnam
Publisher: Cambridge University Press
ISBN: 1107268133
Category: Science
Page: N.A
View: 2709
The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.

    • Mathematics

Practical Foundations of Mathematics


Author: Paul Taylor
Publisher: Cambridge University Press
ISBN: 9780521631075
Category: Mathematics
Page: 572
View: 5232
Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.

    • Education

Musimathics

The Mathematical Foundations of Music
Author: Gareth Loy
Publisher: MIT Press
ISBN: 0262516551
Category: Education
Page: 504
View: 1876
"Mathematics can be as effortless as humming a tune, if you know the tune," writes Gareth Loy. In Musimathics, Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music--a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science.In this volume, Loy presents the materials of music (notes, intervals, and scales); the physical properties of music (frequency, amplitude, duration, and timbre); the perception of music and sound (how we hear); and music composition. Musimathics is carefully structured so that new topics depend strictly on topics already presented, carrying the reader progressively from basic subjects to more advanced ones. Cross-references point to related topics and an extensive glossary defines commonly used terms. The book explains the mathematics and physics of music for the reader whose mathematics may not have gone beyond the early undergraduate level. Calling himself "a composer seduced into mathematics," Loy provides answers to foundational questions about the mathematics of music accessibly yet rigorously. The topics are all subjects that contemporary composers, musicians, and musical engineers have found to be important. The examples given are all practical problems in music and audio. The level of scholarship and the pedagogical approach also make Musimathics ideal for classroom use. Additional material can be found at a companion web site.

    • Mathematics

Handbook of Mathematical Logic


Author: J. Barwise
Publisher: Elsevier
ISBN: 9780080933641
Category: Mathematics
Page: 1164
View: 2704
The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.

    • Continuum hypothesis

Foundations of Mathematics


Author: Andrés Eduardo Caicedo,James Cummings,Peter Koellner,Paul B. Larson
Publisher: American Mathematical Soc.
ISBN: 1470422565
Category: Continuum hypothesis
Page: 322
View: 7343
This volume contains the proceedings of the Logic at Harvard conference in honor of W. Hugh Woodin's 60th birthday, held March 27–29, 2015, at Harvard University. It presents a collection of papers related to the work of Woodin, who has been one of the leading figures in set theory since the early 1980s. The topics cover many of the areas central to Woodin's work, including large cardinals, determinacy, descriptive set theory and the continuum problem, as well as connections between set theory and Banach spaces, recursion theory, and philosophy, each reflecting a period of Woodin's career. Other topics covered are forcing axioms, inner model theory, the partition calculus, and the theory of ultrafilters. This volume should make a suitable introduction to Woodin's work and the concerns which motivate it. The papers should be of interest to graduate students and researchers in both mathematics and philosophy of mathematics, particularly in set theory, foundations and related areas.

    • Mathematics

Introduction to the Foundations of Applied Mathematics


Author: Mark H. Holmes
Publisher: Springer Science & Business Media
ISBN: 0387877657
Category: Mathematics
Page: 468
View: 7454
FOAM. This acronym has been used for over ?fty years at Rensselaer to designate an upper-division course entitled, Foundations of Applied Ma- ematics. This course was started by George Handelman in 1956, when he came to Rensselaer from the Carnegie Institute of Technology. His objective was to closely integrate mathematical and physical reasoning, and in the p- cess enable students to obtain a qualitative understanding of the world we live in. FOAM was soon taken over by a young faculty member, Lee Segel. About this time a similar course, Introduction to Applied Mathematics, was introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology. Together Lin and Segel, with help from Handelman, produced one of the landmark textbooks in applied mathematics, Mathematics Applied to - terministic Problems in the Natural Sciences. This was originally published in 1974, and republished in 1988 by the Society for Industrial and Applied Mathematics, in their Classics Series. This textbook comes from the author teaching FOAM over the last few years. In this sense, it is an updated version of the Lin and Segel textbook.

    • Mathematics

Set Theory, Arithmetic, and Foundations of Mathematics

Theorems, Philosophies
Author: Juliette Kennedy,Roman Kossak
Publisher: Cambridge University Press
ISBN: 1139504819
Category: Mathematics
Page: N.A
View: 4082
This collection of papers from various areas of mathematical logic showcases the remarkable breadth and richness of the field. Leading authors reveal how contemporary technical results touch upon foundational questions about the nature of mathematics. Highlights of the volume include: a history of Tennenbaum's theorem in arithmetic; a number of papers on Tennenbaum phenomena in weak arithmetics as well as on other aspects of arithmetics, such as interpretability; the transcript of Gödel's previously unpublished 1972–1975 conversations with Sue Toledo, along with an appreciation of the same by Curtis Franks; Hugh Woodin's paper arguing against the generic multiverse view; Anne Troelstra's history of intuitionism through 1991; and Aki Kanamori's history of the Suslin problem in set theory. The book provides a historical and philosophical treatment of particular theorems in arithmetic and set theory, and is ideal for researchers and graduate students in mathematical logic and philosophy of mathematics.


    • Philosophy

The Philosophy of Schopenhauer


Author: Dale Jacquette
Publisher: Routledge
ISBN: 1317494482
Category: Philosophy
Page: 320
View: 8392
Dale Jacquette charts the development of Schopenhauer's ideas from the time of his early dissertation on The Fourfold Root of the Principle of Sufficient Reason through the two editions of his magnum opus The World as Will and Representation to his later collections of philosophical aphorisms and competition essays. Jacquette explores the central topics in Schopenhauer's philosophy including his metaphysics of the world as representation and Will, his so-called pessimistic philosophical appraisal of the human condition, his examination of the concept of death, his dualistic analysis of free will, and his simplified non-Kantian theory of morality. Jacquette shows how these many complex themes fit together in a unified portrait of Schopenhauer's philosophy. The synthesis of Plato, Kant and Buddhist and Hindu ideas is given particular attention as is his influence on Nietzsche, first a follower and then arch opponent of Schopenhauer's thought, and the early Wittgenstein. The book provides a comprehensive and in-depth historical and philosophical introduction to Schopenhauer's distinctive contribution to philosophy.

    • Science

Philosophies of Mathematics


Author: Alexander L. George,Daniel Velleman
Publisher: Wiley-Blackwell
ISBN: 9780631195443
Category: Science
Page: 244
View: 1044
This book provides an accessible, critical introduction to the three main approaches that dominated work in the philosophy of mathematics during the twentieth century: logicism, intuitionism and formalism.

    • Science

Mathematical Foundations of Classical Statistical Mechanics


Author: D.Ya. Petrina,V.I. Gerasimenko,P V Malyshev
Publisher: CRC Press
ISBN: 9780415273541
Category: Science
Page: 352
View: 4616
This monograph considers systems of infinite number of particles, in particular the justification of the procedure of thermodynamic limit transition. The authors discuss the equilibrium and non-equilibrium states of infinite classical statistical systems. Those states are defined in terms of stationary and nonstationary solutions to the Bogolyubov equations for the sequences of correlation functions in the thermodynamic limit. This is the first detailed investigation of the thermodynamic limit for non-equilibrium systems and of the states of infinite systems in the cases of both canonical and grand canonical ensembles, for which the thermodynamic equivalence is proved. A comprehensive survey of results is also included; it concerns the properties of correlation functions for infinite systems and the corresponding equations. For this new edition, the authors have made changes to reflect the development of theory in the last ten years. They have also simplified certain sections, presenting them more systematically, and greatly increased the number of references. The book is aimed at theoretical physicists and mathematicians and will also be of use to students and postgraduate students in the field.

    • Philosophy

Philosophical Logic


Author: John P. Burgess
Publisher: Princeton University Press
ISBN: 9780691137896
Category: Philosophy
Page: 153
View: 8175
Philosophical Logic is a clear and concise critical survey of nonclassical logics of philosophical interest written by one of the world's leading authorities on the subject. After giving an overview of classical logic, John Burgess introduces five central branches of nonclassical logic (temporal, modal, conditional, relevantistic, and intuitionistic), focusing on the sometimes problematic relationship between formal apparatus and intuitive motivation. Requiring minimal background and arranged to make the more technical material optional, the book offers a choice between an overview and in-depth study, and it balances the philosophical and technical aspects of the subject. The book emphasizes the relationship between models and the traditional goal of logic, the evaluation of arguments, and critically examines apparatus and assumptions that often are taken for granted. Philosophical Logic provides an unusually thorough treatment of conditional logic, unifying probabilistic and model-theoretic approaches. It underscores the variety of approaches that have been taken to relevantistic and related logics, and it stresses the problem of connecting formal systems to the motivating ideas behind intuitionistic mathematics. Each chapter ends with a brief guide to further reading. Philosophical Logic addresses students new to logic, philosophers working in other areas, and specialists in logic, providing both a sophisticated introduction and a new synthesis.

    • Philosophy

Philosophy of Physics

Space and Time
Author: Tim Maudlin
Publisher: Princeton University Press
ISBN: 0691143099
Category: Philosophy
Page: 183
View: 9834
Introduces non-physicists to core philosophical issues surrounding the nature & structure of space & time, & is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Provides a broad historical overview, from Aristotle to Einstein, & covers the Twins Paradox, Galilean relativity, time travel, & more.

    • Philosophy

Philosophy of Mathematics

Structure and Ontology
Author: Stewart Shapiro
Publisher: Oxford University Press
ISBN: 9780198025450
Category: Philosophy
Page: 296
View: 1974
Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable epistemic problems. As a way out of this dilemma, Shapiro articulates a structuralist approach. On this view, the subject matter of arithmetic, for example, is not a fixed domain of numbers independent of each other, but rather is the natural number structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle. Using this framework, realism in mathematics can be preserved without troublesome epistemic consequences. Shapiro concludes by showing how a structuralist approach can be applied to wider philosophical questions such as the nature of an "object" and the Quinean nature of ontological commitment. Clear, compelling, and tautly argued, Shapiro's work, noteworthy both in its attempt to develop a full-length structuralist approach to mathematics and to trace its emergence in the history of mathematics, will be of deep interest to both philosophers and mathematicians.