• Mathematics

Lectures on Nonlinear Hyperbolic Differential Equations

Author: Lars Hörmander
Publisher: Springer Science & Business Media
ISBN: 9783540629214
Category: Mathematics
Page: 289
View: 9745
In this introductory textbook, a revised and extended version of well-known lectures by L. Hörmander from 1986, four chapters are devoted to weak solutions of systems of conservation laws. Apart from that the book only studies classical solutions. Two chapters concern the existence of global solutions or estimates of the lifespan for solutions of nonlinear perturbations of the wave or Klein-Gordon equation with small initial data. Four chapters are devoted to microanalysis of the singularities of the solutions. This part assumes some familiarity with pseudodifferential operators which are standard in the theory of linear differential operators, but the extension to the more exotic classes of opertors needed in the nonlinear theory is presented in complete detail.

    • Mathematics

Advanced Numerical Approximation of Nonlinear Hyperbolic Equations

Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, June 23-28, 1997
Author: B. Cockburn,C. Johnson,C.-W. Shu,E. Tadmor
Publisher: Springer
ISBN: 3540498044
Category: Mathematics
Page: 454
View: 9019
This volume contains the texts of the four series of lectures presented by B.Cockburn, C.Johnson, C.W. Shu and E.Tadmor at a C.I.M.E. Summer School. It is aimed at providing a comprehensive and up-to-date presentation of numerical methods which are nowadays used to solve nonlinear partial differential equations of hyperbolic type, developing shock discontinuities. The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.

    • Mathematics

Blowup for Nonlinear Hyperbolic Equations

Author: Serge Alinhac
Publisher: Springer Science & Business Media
ISBN: 9780817638108
Category: Mathematics
Page: 113
View: 1614

    • Mathematics

Geometric Analysis of Hyperbolic Differential Equations: An Introduction

Author: S. Alinhac
Publisher: Cambridge University Press
ISBN: 1139485814
Category: Mathematics
Page: N.A
View: 8643
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.

    • Differential equations, Linear

Lectures on Non-linear Wave Equations

Author: Christopher Donald Sogge
Publisher: N.A
ISBN: 9781571462794
Category: Differential equations, Linear
Page: 204
View: 7882

    • Mathematics

Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations

A Volume of Advances in Partial Differential Equations
Author: Sergio Albeverio,Michael Demuth,Elmar Schrohe,Bert-Wolfgang Schulze
Publisher: Birkhäuser
ISBN: 3034880731
Category: Mathematics
Page: 440
View: 6931
This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations".

    • Mathematics

Nonlinear Systems of Partial Differential Equations in Applied Mathematics

Author: Basil Nicolaenko,Darryl D. Holm,James M. Hyman,American Mathematical Society
Publisher: American Mathematical Soc.
ISBN: 9780821896891
Category: Mathematics
Page: 855
View: 6065
These two volumes of 47 papers focus on the increased interplay of theoretical advances in nonlinear hyperbolic systems, completely integrable systems, and evolutionary systems of nonlinear partial differential equations. The papers both survey recent results and indicate future research trends in these vital and rapidly developing branches of PDEs. The editor has grouped the papers loosely into the following five sections: integrable systems, hyperbolic systems, variational problems, evolutionary systems, and dispersive systems. However, the variety of the subjects discussed as well as their many interwoven trends demonstrate that it is through interactive advances that such rapid progress has occurred. These papers require a good background in partial differential equations. Many of the contributors are mathematical physicists, and the papers are addressed to mathematical physicists (particularly in perturbed integrable systems), as well as to PDE specialists and applied mathematicians in general.

    • Mathematics

Lecture Notes on Numerical Methods for Hyperbolic Equations

Author: Elena Vázquez-Cendón
Publisher: CRC Press
ISBN: 9780415683883
Category: Mathematics
Page: 144
View: 9628
This volume contains the lecture notes of the Short Course on Numerical Methods for Hyperbolic Equations (Faculty of Mathematics, University of Santiago de Compostela, Spain, 2-4 July 2011). The course was organized in recognition of Prof. Eleuterio Toro’s contribution to education and training on numerical methods for partial differential equations and was organized prior to the International Conference on Numerical Methods for Hyperbolic Equations: Theory and Applications, which honours Professor Toro in the month of his 65th birthday. These lecture notes on selected topics in numerical methods for hyperbolic equations are from renowned academics in both theoretical and applied fields, and include contributions on: Nonlinear hyperbolic conservation laws First order schemes for the Euler equations High-order accuracy: monotonicity and non-linear methods High-order schemes for multidimensional hyperbolic problems A numerical method for the simulation of turbulent mixing and its basis in mathematical theory Lectures Notes on Numerical Methods for Hyperbolic Equations is intended primarily for research students and post-doctoral research fellows. Some background knowledge on the basics of the theoretical aspects of the partial differential equations, their physical meaning and discretization methods is assumed.

    • Mathematics

Hyperbolic Partial Differential Equations and Geometric Optics

Author: Jeffrey Rauch
Publisher: American Mathematical Soc.
ISBN: 0821872915
Category: Mathematics
Page: 363
View: 2714
This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which are used, in particular, to describe propagation of waves at finite speed. Among the topics carefully presented in the book are nonlinear geometric optics, the asymptotic analysis of short wavelength solutions, and nonlinear interaction of such waves. Studied in detail are the damping of waves, resonance, dispersive decay, and solutions to the compressible Euler equations with dense oscillations created by resonant interactions. Many fundamental results are presented for the first time in a textbook format. In addition to dense oscillations, these include the treatment of precise speed of propagation and the existence and stability questions for the three wave interaction equations. One of the strengths of this book is its careful motivation of ideas and proofs, showing how they evolve from related, simpler cases. This makes the book quite useful to both researchers and graduate students interested in hyperbolic partial differential equations. Numerous exercises encourage active participation of the reader. The author is a professor of mathematics at the University of Michigan. A recognized expert in partial differential equations, he has made important contributions to the transformation of three areas of hyperbolic partial differential equations: nonlinear microlocal analysis, the control of waves, and nonlinear geometric optics.

    • Technology & Engineering

Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws

Lectures Presented at a Workshop at the Mathematical Research Institute Oberwolfach, Germany, Jan 15 – 21, 2012
Author: Rainer Ansorge,Hester Bijl,Andreas Meister,Thomas Sonar
Publisher: Springer Science & Business Media
ISBN: 364233220X
Category: Technology & Engineering
Page: 330
View: 6397
In January 2012 an Oberwolfach workshop took place on the topic of recent developments in the numerics of partial differential equations. Focus was laid on methods of high order and on applications in Computational Fluid Dynamics. The book covers most of the talks presented at this workshop.

    • Mathematics

Lectures on Nonlinear Evolution Equations

Initial Value Problems
Author: Reinhard Racke
Publisher: Birkhäuser
ISBN: 3319218735
Category: Mathematics
Page: 306
View: 4212
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided. In this second edition, initial-boundary value problems in waveguides are additionally considered.

    • Mathematics

Hyperbolic Systems of Conservation Laws

The Theory of Classical and Nonclassical Shock Waves
Author: Philippe G. LeFloch
Publisher: Springer Science & Business Media
ISBN: 9783764366872
Category: Mathematics
Page: 294
View: 6517
This book is a self-contained exposition of the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. The text covers the existence, uniqueness, and continuous dependence of classical (compressive) entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The study of nonclassical shock waves is based on the concept of a kinetic relation introduced by the author for general hyperbolic systems and derived from singular limits of hyperbolic conservation laws with balanced diffusion and dispersion terms. The systems of partial differential equations under consideration arise in many areas of continuum physics. No familiarity with the subject is assumed, so the book should be particularly suitable for graduate students and researchers interested in recent developments about nonlinear partial differential equations and the mathematical aspects of shock waves and propagating phase boundaries.

    • Mathematics

Splitting Methods for Partial Differential Equations with Rough Solutions

Analysis and MATLAB Programs
Author: Helge Holden
Publisher: European Mathematical Society
ISBN: 9783037190784
Category: Mathematics
Page: 226
View: 591
Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tacking. The theory is illustrated by numerous examples. There is a dedicated web page that provides MATLAB codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

    • Mathematics

Numerical Methods for Hyperbolic Equations

Author: Elena Vázquez-Cendón,Arturo Hidalgo,Pilar Garcia Navarro,Luis Cea
Publisher: CRC Press
ISBN: 020356233X
Category: Mathematics
Page: 434
View: 9781
Numerical Methods for Hyperbolic Equations is a collection of 49 articles presented at the International Conference on Numerical Methods for Hyperbolic Equations: Theory and Applications (Santiago de Compostela, Spain, 4-8 July 2011). The conference was organized to honour Professor Eleuterio Toro in the month of his 65th birthday. The topics covered include: • Recent advances in the numerical computation of environmental conservation laws with source terms • Multiphase flow and porous media • Numerical methods in astrophysics • Seismology and geophysics modelling • High order methods for hyperbolic conservation laws • Numerical methods for reactive flows • Finite volume and discontinous Galerkin schemes for stiff source term problems • Methods and models for biomedical problems • Numerical methods for reactive flows The research interest of Eleuterio Toro, born in Chile on 16th July 1946, is reflected in Numerical Methods for Hyperbolic Equations, and focuses on: numerical methods for partial differential equations, with particular emphasis on methods for hyperbolic equations; design and application of new algorithms; hyperbolic partial differential equations as mathematical models of various types of processes; mathematical modelling and simulation of physico/chemical processes that include wave propagation phenomena; modelling of multiphase flows; application of models and methods to real problems. Eleuterio Toro received several honours and distinctions, including the honorary title OBE from Queen Elizabeth II (Buckingham Palace, London 2000); Distinguished Citizen of the City of Carahue (Chile, 2001); Life Fellow, Claire Hall, University of Cambridge (UK, 2003); Fellow of the Indian Society for Shock Wave Research (Bangalore, 2005); Doctor Honoris Causa (Universidad de Santiago de Chile, 2008); William Penney Fellow, University of Cambridge (UK, 2010); Doctor Honoris Causa (Universidad de la Frontera, Chile, 2012). Professor Toro is author of two books, editor of two books and author of more than 260 research works. In the last ten years he has been invited and keynote speaker in more than 100 scientific events. Professor Toro has held many visiting appointments round the world, which include several European countries, Japan, China and USA.

    • Mathematics

Nonlinear Wave Equations, Formation of Singularities

Author: Fritz John
Publisher: American Mathematical Soc.
ISBN: 0821870017
Category: Mathematics
Page: 64
View: 7962
This is the second volume in the University Lecture Series, designed to make more widely available some of the outstanding lectures presented in various institutions around the country. Each year at Lehigh University, a distinguished mathematical scientist presents the Pitcher Lectures in the Mathematical Sciences. This volume contains the Pitcher lectures presented by Fritz John in April 1989. The lectures deal with existence in the large of solutions of initial value problems for nonlinear hyperbolic partial differential equations. As is typical with nonlinear problems, there are many results and few general conclusions in this extensive subject, so the author restricts himself to a small portion of the field, in which it is possible to discern some general patterns. Presenting an exposition of recent research in this area, the author examines the way in which solutions can, even with small and very smooth initial data, ``blow up'' after a finite time. For various types of quasi-linear equations, this time depends strongly on the number of dimensions and the ``size'' of the data. Of particular interest is the formation of singularities for nonlinear wave equations in three space dimensions.

    • Mathematics

Beyond Partial Differential Equations

On Linear and Quasi-Linear Abstract Hyperbolic Evolution Equations
Author: Horst Reinhard Beyer
Publisher: Springer
ISBN: 3540711295
Category: Mathematics
Page: 283
View: 3480
This book introduces the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students with basic knowledge in functional analysis, with only some examples requiring more specialized knowledge from the spectral theory of linear, self-adjoint operators in Hilbert spaces. Emphasis is placed on equations of the hyperbolic type which are less often treated in the literature.

    • Mathematics

The Schrödinger Equation

Author: F.A. Berezin,M. Shubin
Publisher: Springer Science & Business Media
ISBN: 9401131546
Category: Mathematics
Page: 555
View: 1215

    • Mathematics

Lecture Notes on Functional Analysis

With Applications to Linear Partial Differential Equations
Author: Alberto Bressan
Publisher: American Mathematical Soc.
ISBN: 0821887718
Category: Mathematics
Page: 250
View: 4493
This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.

    • Juvenile Nonfiction

Numerical Methods for Conservation Laws

Publisher: Birkhäuser
ISBN: 3034851162
Category: Juvenile Nonfiction
Page: 214
View: 8262
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

    • Mathematics

Handbook of Differential Equations

Evolutionary Equations
Author: Constantine M. Dafermos,Eduard Feireisl
Publisher: Gulf Professional Publishing
ISBN: 9780444520487
Category: Mathematics
Page: 676
View: 7706
The material collected in this volume reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear parabolic PDE's. Articles will highlight the present as well as expected future directions of development of the field with particular emphasis on applications. The article by Ambrosio and Savaér discusses the most recent development in the theory of gradient flow of probability measures. After an introduction reviewing the properties of the Wasserstein space and corresponding subdifferential calculus, applications are given to evolutionary partial differential equations. The contribution of Herrero provides a description of some mathematical approaches developed to account for quantitative as well as qualitative aspects of chemotaxis. Particular attention is paid to the limits of cell's capability to measure external cues on the one hand, and to provide an overall description of aggregation models for the slim mold Dictyostelium discoideum on the other. The chapter written by Masmoudi deals with a rather different topic - examples of singular limits in hydrodynamics. This is nowadays a well-studied issue given the amount of new results based on the development of the existence theory for rather general systems of equations in hydrodynamics. The paper by DeLellis addreses the most recent results for the transport equations with regard to possible applications in the theory of hyperbolic systems of conservation laws. Emphasis is put on the development of the theory in the case when the governing field is only a BV function. The chapter by Rein represents a comprehensive survey of results on the Poisson-Vlasov system in astrophysics. The question of global stability of steady states is addressed in detail. The contribution of Soner is devoted to different representations of non-linear parabolic equations in terms of Markov processes. After a brief introduction on the linear theory, a class of non-linear equations is investigated, with applications to stochastic control and differential games. The chapter written by Zuazua presents some of the recent progresses done on the problem of controllabilty of partial differential equations. The applications include the linear wave and heat equations, parabolic equations with coefficients of low regularity, and some fluid-structure interaction models. - Volume 1 focuses on the abstract theory of evolution - Volume 2 considers more concrete probelms relating to specific applications - Volume 3 reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear PDEs.