• Mathematics

Numbers and Proofs


Author: Reg Allenby
Publisher: Elsevier
ISBN: 0080928773
Category: Mathematics
Page: 288
View: 9613
'Numbers and Proofs' presents a gentle introduction to the notion of proof to give the reader an understanding of how to decipher others' proofs as well as construct their own. Useful methods of proof are illustrated in the context of studying problems concerning mainly numbers (real, rational, complex and integers). An indispensable guide to all students of mathematics. Each proof is preceded by a discussion which is intended to show the reader the kind of thoughts they might have before any attempt proof is made. Established proofs which the student is in a better position to follow then follow. Presented in the author's entertaining and informal style, and written to reflect the changing profile of students entering universities, this book will prove essential reading for all seeking an introduction to the notion of proof as well as giving a definitive guide to the more common forms. Stressing the importance of backing up "truths" found through experimentation, with logically sound and watertight arguments, it provides an ideal bridge to more complex undergraduate maths.

    • Mathematics

Numbers, Sequences and Series


Author: Keith E. Hirst
Publisher: Butterworth-Heinemann
ISBN: 0340610433
Category: Mathematics
Page: 198
View: 1665
Concerned with the logical foundations of number systems from integers to complex numbers.

    • Mathematics

The Art of Proof

Basic Training for Deeper Mathematics
Author: Matthias Beck,Ross Geoghegan
Publisher: Springer Science & Business Media
ISBN: 9781441970237
Category: Mathematics
Page: 182
View: 4663
The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.

    • Mathematics

Modular Functions and Dirichlet Series in Number Theory


Author: Tom M. Apostol
Publisher: Springer Science & Business Media
ISBN: 1461209994
Category: Mathematics
Page: 207
View: 3311
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.

    • Mathematics

Discrete Mathematics

Numbers and Beyond
Author: Stephen Barnett
Publisher: Addison-Wesley
ISBN: N.A
Category: Mathematics
Page: 441
View: 6069
For the increasing number of students who need an understanding of the subject, Discrete Mathematics: Numbers and Beyond provides the perfect introduction. Aimed particularly at non-specialists, its attractive style and practical approach offer easy access to this important subject. With an emphasis on methods and applications rather than rigorous proofs, the book's coverage is based an the essential topics of numbers, counting and numerical processes. Discrete Mathematics: Numbers and Beyond supplies the reader with a thorough grounding in number systems, modular arithmetic, combinatorics, networks and graphs, coding theory and recurrence relations. Throughout the book, learning is aided and reinforced by the following features: a wealth of exercises and problems of varying difficulty a wide range of illustrative applications of general interest numerous worked examples and diagrams team-based student projects in every chapter concise, informal explanations tips for further reading Discrete Mathematics: Numbers and Beyond is an ideal textbook for an introductory discrete mathematics course taken by students of economics, computer science, mathematics, business, finance, engineering and the sciences. 0201342928B04062001

    • Science

An Adventurer's Guide to Number Theory


Author: Richard Friedberg
Publisher: Courier Corporation
ISBN: 0486152693
Category: Science
Page: 240
View: 3324
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.

    • Mathematics

Rings, Fields and Groups

An Introduction to Abstract Algebra
Author: R. B. J. T. Allenby
Publisher: Butterworth-Heinemann
ISBN: 9780340544402
Category: Mathematics
Page: 383
View: 754
Provides an introduction to the results, methods and ideas which are now commonly studied in abstract algebra courses

    • Mathematics

Understanding Mathematical Proof


Author: John Taylor,Rowan Garnier
Publisher: CRC Press
ISBN: 1466514914
Category: Mathematics
Page: 414
View: 3495
The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students’ ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples.

    • Mathematics

Linear Algebra


Author: Reg Allenby
Publisher: Butterworth-Heinemann
ISBN: 0080571794
Category: Mathematics
Page: 240
View: 330
As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.

    • Mathematics

Proofs from THE BOOK


Author: Martin Aigner,Günter M. Ziegler
Publisher: Springer
ISBN: 3662442051
Category: Mathematics
Page: 308
View: 9059
This revised and enlarged fifth edition features four new chapters, which contain highly original and delightful proofs for classics such as the spectral theorem from linear algebra, some more recent jewels like the non-existence of the Borromean rings and other surprises. From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questio ns so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011.

    • Mathematics

A Readable Introduction to Real Mathematics


Author: Daniel Rosenthal,David Rosenthal,Peter Rosenthal
Publisher: Springer
ISBN: 3319056549
Category: Mathematics
Page: 161
View: 7121
Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: mathematical induction - modular arithmetic - the fundamental theorem of arithmetic - Fermat's little theorem - RSA encryption - the Euclidean algorithm -rational and irrational numbers - complex numbers - cardinality - Euclidean plane geometry - constructability (including a proof that an angle of 60 degrees cannot be trisected with a straightedge and compass). This textbook is suitable for a wide variety of courses and for a broad range of students in the fields of education, liberal arts, physical sciences and mathematics. Students at the senior high school level who like mathematics will also be able to further their understanding of mathematical thinking by reading this book.

    • Mathematics

How to Count

An Introduction to Combinatorics, Second Edition
Author: R.B.J.T. Allenby,Alan Slomson
Publisher: CRC Press
ISBN: 1420082612
Category: Mathematics
Page: 444
View: 1811
Emphasizes a Problem Solving Approach A first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics. New to the Second Edition This second edition incorporates 50 percent more material. It includes seven new chapters that cover occupancy problems, Stirling and Catalan numbers, graph theory, trees, Dirichlet’s pigeonhole principle, Ramsey theory, and rook polynomials. This edition also contains more than 450 exercises. Ideal for both classroom teaching and self-study, this text requires only a modest amount of mathematical background. In an engaging way, it covers many combinatorial tools, such as the inclusion-exclusion principle, generating functions, recurrence relations, and Pólya’s counting theorem.

    • Mathematics

The Art of Mathematics


Author: Jerry P. King
Publisher: Courier Corporation
ISBN: 0486450201
Category: Mathematics
Page: 313
View: 2740
Clear, concise, and superbly written, this book reveals the beauty at the heart of mathematics, illustrating the fundamental connection between aesthetics and mathematics. "Witty, trenchant, and provocative." ? Mathematical Association of America.

    • Mathematics

Elliptic Curves, Modular Forms, and Their L-functions


Author: Alvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 0821852426
Category: Mathematics
Page: 195
View: 3150
Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.

    • Mathematics

Vectors in Two or Three Dimensions


Author: Ann Hirst
Publisher: Butterworth-Heinemann
ISBN: 0080572014
Category: Mathematics
Page: 144
View: 9044
Vectors in 2 or 3 Dimensions provides an introduction to vectors from their very basics. The author has approached the subject from a geometrical standpoint and although applications to mechanics will be pointed out and techniques from linear algebra employed, it is the geometric view which is emphasised throughout. Properties of vectors are initially introduced before moving on to vector algebra and transformation geometry. Vector calculus as a means of studying curves and surfaces in 3 dimensions and the concept of isometry are introduced later, providing a stepping stone to more advanced theories. * Adopts a geometric approach * Develops gradually, building from basics to the concept of isometry and vector calculus * Assumes virtually no prior knowledge * Numerous worked examples, exercises and challenge questions

    • Mathematics

Exploring Mathematics

An Engaging Introduction to Proof
Author: John Meier,Derek Smith
Publisher: Cambridge University Press
ISBN: 1108509282
Category: Mathematics
Page: N.A
View: 6081
Exploring Mathematics gives students experience with doing mathematics - interrogating mathematical claims, exploring definitions, forming conjectures, attempting proofs, and presenting results - and engages them with examples, exercises, and projects that pique their interest. Written with a minimal number of pre-requisites, this text can be used by college students in their first and second years of study, and by independent readers who want an accessible introduction to theoretical mathematics. Core topics include proof techniques, sets, functions, relations, and cardinality, with selected additional topics that provide many possibilities for further exploration. With a problem-based approach to investigating the material, students develop interesting examples and theorems through numerous exercises and projects. In-text exercises, with complete solutions or robust hints included in an appendix, help students explore and master the topics being presented. The end-of-chapter exercises and projects provide students with opportunities to confirm their understanding of core material, learn new concepts, and develop mathematical creativity.

    • Mathematics

The Prime Numbers and Their Distribution


Author: Gerald Tenenbaum,Michel Mendès France
Publisher: American Mathematical Soc.
ISBN: 0821816470
Category: Mathematics
Page: 115
View: 6090
One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. The book opens with some classic topics of number theory. It ends with a discussion of some of the outstanding conjectures in number theory. In between are an excellent chapter on the stochastic properties of primes and a walk through an elementary proof of the Prime Number Theorem. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians.

    • Mathematics

Fermat's Last Theorem: The Proof


Author: Takeshi Saito
Publisher: American Mathematical Soc.
ISBN: 0821898493
Category: Mathematics
Page: 234
View: 8477
This is the second volume of the book on the proof of Fermat's Last Theorem by Wiles and Taylor (the first volume is published in the same series; see MMONO/243). Here the detail of the proof announced in the first volume is fully exposed. The book also includes basic materials and constructions in number theory and arithmetic geometry that are used in the proof. In the first volume the modularity lifting theorem on Galois representations has been reduced to properties of the deformation rings and the Hecke modules. The Hecke modules and the Selmer groups used to study deformation rings are constructed, and the required properties are established to complete the proof. The reader can learn basics on the integral models of modular curves and their reductions modulo that lay the foundation of the construction of the Galois representations associated with modular forms. More background materials, including Galois cohomology, curves over integer rings, the Néron models of their Jacobians, etc., are also explained in the text and in the appendices.

    • Mathematics

An Introduction to Mathematical Reasoning


Author: Peter J. Eccles
Publisher: Cambridge University Press
ISBN: 9780521597180
Category: Mathematics
Page: 350
View: 6577
This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.

    • Mathematics

Groups - Modular Mathematics Series


Author: Camilla Jordan,David Jordan
Publisher: Butterworth-Heinemann
ISBN: 0080571654
Category: Mathematics
Page: 224
View: 8794
This text provides an introduction to group theory with an emphasis on clear examples. The authors present groups as naturally occurring structures arising from symmetry in geometrical figures and other mathematical objects. Written in a 'user-friendly' style, where new ideas are always motivated before being fully introduced, the text will help readers to gain confidence and skill in handling group theory notation before progressing on to applying it in complex situations. An ideal companion to any first or second year course on the topic.