• Science

The Physics of Solids


Author: J. B. Ketterson
Publisher: Oxford University Press
ISBN: 0191060569
Category: Science
Page: 800
View: 9446
This comprehensive text covers the basic physics of the solid state starting at an elementary level suitable for undergraduates but then advancing, in stages, to a graduate and advanced graduate level. In addition to treating the fundamental elastic, electrical, thermal, magnetic, structural, electronic, transport, optical, mechanical and compositional properties, we also discuss topics like superfluidity and superconductivity along with special topics such as strongly correlated systems, high-temperature superconductors, the quantum Hall effects, and graphene. Particular emphasis is given to so-called first principles calculations utilizing modern density functional theory which for many systems now allow accurate calculations of the electronic, magnetic, and thermal properties.

    • Science

The Physics of Solids


Author: Richard Turton,Richard John Turton
Publisher: Oxford University Press on Demand
ISBN: 9780198503521
Category: Science
Page: 418
View: 6460
I like the way the book starts with bonds between atoms before the obligatory chapter on crystalline solids, followed by an excellent treatment of mechanical properties. The standard topics of solid-state physics are then presented, starting with electronic properties. There is a splendid final chapter on polymers. The style is confident, authoritative and up to date ...Richard Feynman, in evaluating his own attempt to teach quantum mechanics early in a physics course, reckoned he had failed. Has Richard Turton succeeded? I think he has. Andrew Briggs, professor of materials, University of Oxford The Times Higher, 24 November 2000 (Physics and Engineering)This book is aimed at first and second year undergraduates taking a course in solid state physics. It is suitable for physics or engineering students. It is aimed at a substantially lower level than the majority of solid state physics texts. in particular, it does not assume any prior knowledge of quantum theory. The text is largely non-mathematical, but questions are integrated into the text to encourage readers to tackle the problem-solving aspects of the subject. Worked examples and a complete set of detailed solutions are included.

    • Science

The Physics of Solids

Essentials and Beyond
Author: Eleftherios N. Economou
Publisher: Springer Science & Business Media
ISBN: 9783642020698
Category: Science
Page: 865
View: 5994
Solid State Physics emphasizes a few fundamental principles and extracts from them a wealth of information. This approach also unifies an enormous and diverse subject which seems to consist of too many disjoint pieces. The book starts with the absolutely minimum of formal tools, emphasizes the basic principles, and employs physical reasoning (" a little thinking and imagination" to quote R. Feynman) to obtain results. Continuous comparison with experimental data leads naturally to a gradual refinement of the concepts and to more sophisticated methods. After the initial overview with an emphasis on the physical concepts and the derivation of results by dimensional analysis, The Physics of Solids deals with the Jellium Model (JM) and the Linear Combination of Atomic Orbitals (LCAO) approaches to solids and introduces the basic concepts and information regarding metals and semiconductors.

    • Science

Electronic Structure and the Properties of Solids

The Physics of the Chemical Bond
Author: Walter A. Harrison
Publisher: Courier Corporation
ISBN: 0486141780
Category: Science
Page: 582
View: 713
This text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds; also explains how to calculate dielectric, conducting, bonding properties.

    • Science

Fundamentals of the Physics of Solids

Volume II: Electronic Properties
Author: Jenö Sólyom
Publisher: Springer Science & Business Media
ISBN: 3540853154
Category: Science
Page: 646
View: 5558
The reader is holding the second volume of a three-volume textbook on sol- state physics. This book is the outgrowth of the courses I have taught for many years at Eötvös University, Budapest, for undergraduate and graduate students under the titles Solid-State Physics and Modern Solid-State Physics. The main motivation for the publication of my lecture notes as a book was that none of the truly numerous textbooks covered all those areas that I felt should be included in a multi-semester course. Especially, if the course strives to present solid-state physics in a uni?ed structure, and aims at d- cussing not only classic chapters of the subject matter but also (in more or less detail) problems that are of great interest for today’s researcher as well. Besides, the book presents a much larger material than what can be covered in a two- or three-semester course. In the ?rst part of the ?rst volume the analysis of crystal symmetries and structure goes into details that certainly cannot be included in a usual course on solid-state physics. The same applies, among others, to the discussion of the methods used in the determination of band structure, the properties of Fermi liquids and non-Fermi liquids, and the theory of unconventional superconductors in the present and third volumes. These parts can be assigned as supplementary reading for interested students, or can be discussed in advanced courses.

    • Science

Fundamentals of the Physics of Solids

Volume 3 - Normal, Broken-Symmetry, and Correlated Systems
Author: Jenö Sólyom
Publisher: Springer Science & Business Media
ISBN: 9783642045189
Category: Science
Page: 747
View: 5438
This book is the third of a three-volume series written by the same author. It aims to deliver a comprehensive and self-contained account of the fundamentals of the physics of solids. In the presentation of the properties and experimentally observed phenomena together with the basic concepts and theoretical methods, it goes far beyond most classic texts. The essential features of various experimental techniques are also explained. This volume is devoted mostly to the discussion of the effects of electron—electron interaction beyond the one-electron approximation. The density-functional theory is introduced to account for correlation effects. The response to external perturbations is discussed in the framework of linear response theory. Landau’s Fermi-liquid theory is followed by the theory of Luttinger liquids. The subsequent chapters are devoted to electronic phases with broken symmetry: to itinerant magnetism, to spin- and charge-density waves and their realizations in quasi-one-dimensional materials, as well as to the microscopic theory of superconductivity. An overview is given of the physics of strongly correlated systems. The last chapter covers selected problems in the physics of disordered systems.

    • Science

Introduction to the Physics of Electrons in Solids


Author: Brian K. Tanner
Publisher: Cambridge University Press
ISBN: 9780521283588
Category: Science
Page: 246
View: 8388
In this upper-level text, Professor Tanner introduces the reader to the behavior of electrons in solids, starting with the simplest possible model. Unlike other solid state physics texts, this book does not begin with complex crystallography, but instead builds up from the simplest possible model of a free electron in a box and introduces higher levels of complexity only when the simple model is inadequate. The approach is to introduce the subject through its historical development, and to show how quantum mechanics is necessary for an understanding of the properties of electrons in solids. The author also includes an examination of the consequences of collective behavior in the phenomena of magnetism and superconductivity. Examples and problems are included for practice.

    • Science

The Physics of Amorphous Solids


Author: Richard Zallen
Publisher: John Wiley & Sons
ISBN: 3527617973
Category: Science
Page: 318
View: 4538
An in-depth study of non-crystalline solids in which the arrangement of the atoms do not have long-range order. Describes the way amorphous solids are formed, the phenomenology of the liquid-to-glass and glass- to-liquid transition, and the technological applications. Emphasizes modern approaches such as scaling, localization, and percolation. Includes extensive treatment of structural aspects of amorphous solids, ranging from metallic glasses, to chalcogenides, to organic polymers. Incorporates illustrations for the clarification of physics concepts.

    • Science

Introduction to the Physics of Electrons in Solids


Author: Henri Alloul
Publisher: Springer Science & Business Media
ISBN: 9783642135651
Category: Science
Page: 618
View: 6077
This textbook sets out to enable readers to understand fundamental aspects underlying quantum macroscopic phenomena in solids, primarily through the modern experimental techniques and results. The classic independent-electrons approach for describing the electronic structure in terms of energy bands helps explain the occurrence of metals, insulators and semiconductors. It is underlined that superconductivity and magnetism can only be understood by taking into account the interactions between electrons. The text recounts the experimental observations that have revealed the main properties of the superconductors and were essential to track its physical origin. While fundamental concepts are underlined, those which are required to describe the high technology applications, present or future, are emphasized as well. Problem sets involve experimental approaches and tools which support a practical understanding of the materials and their behaviour.

    • Science

The Physics and Chemistry of Solids


Author: Stephen Elliott,Stephen Richard Elliott
Publisher: Wiley-Blackwell
ISBN: 9780471981954
Category: Science
Page: 770
View: 4595
Taking an original, imaginative approach to the subject, Stephen Elliott's book is one of the first to bridge the gap between solid state physics and chemistry. Considerable thought has gone into the structure and content of this book, with the first four chapters covering the properties of atoms in solids and the remaining four concentrating on the behaviour of electrons in materials. Fundamental principles are covered together with the very latest developments, such as combinatorial library synthesis, mesoporous materials, fullerenes and nanotubes, optical localization and the experimental observation of fractional electronic charge. Clearly written and richly illustrated, The Physics and Chemistry of Solids will be of great interest to Physicists, Chemists, Material Scientists and Engineers.

    • Science

Principles of the Theory of Solids


Author: J. M. Ziman
Publisher: Cambridge University Press
ISBN: 9780521297332
Category: Science
Page: 435
View: 7458
"...an admirable book. Indeed, it scarcely needs my commendation: It is already being widely used as a graduate text on both sides of the Atlantic." Nature

    • Science

Introduction to the Physics of Fluids and Solids


Author: J. S. Trefil
Publisher: Elsevier
ISBN: 148318739X
Category: Science
Page: 318
View: 7537
Introduction to the Physics of Fluids and Solids presents a way to learn continuum mechanics without mastering any other systems. It discusses an introduction to the principles of fluid mechanics. Another focus of study is the fluids in astrophysics. Some of the topics covered in the book are the rotation of the galaxy, the concept of stability, the fluids in motion, and the waves in fluids, the theory of the tides, the vibrations of the earth, and nuclear fission. The viscosity in fluids is covered. The flow of viscous fluids is discussed. The text identifies the general circulation of the atmosphere. An analysis of the general properties of solids is presented. A chapter of the volume is devoted to the applications of seismology. Another section of the book focuses on the flow of the blood and the urinary drop spectrometer. The book will provide useful information to doctors, physicists, engineers, students and researchers.

    • Science

The Physics of Phonons


Author: G.P Srivastava
Publisher: CRC Press
ISBN: 9780852741535
Category: Science
Page: 438
View: 2887
There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.

    • Technology & Engineering

The Physics and Engineering of Solid State Lasers


Author: Yehoshua Y. Kalisky
Publisher: SPIE Press
ISBN: 9780819460943
Category: Technology & Engineering
Page: 203
View: 1925
This text explains the mutual influences between the physical and dynamic processes in solids and their lasing properties. It provides insight into the physics and engineering of solid state lasers by integrating information from several disciplines, including solid state physics, materials science, photophysics, and dynamic processes in solids. The text discusses approaches to developing new laser materials and includes data tables of basic parameters that can be applied to laser design. Novel materials and techniques used in recent developments are also covered. One reviewer said, This is excellent. [Chapter 6] on photophysics is outstanding! Very well written and excellent equation derivation.

    • Science

Band Theory and Electronic Properties of Solids


Author: John Singleton
Publisher: OUP Oxford
ISBN: 0191057460
Category: Science
Page: 240
View: 1877
This book provides an introduction to band theory and the electronic properties of materials at a level suitable for final-year undergraduates or first-year graduate students. It sets out to provide the vocabulary and quantum-mechanical training necessary to understand the electronic, optical and structural properties of the materials met in science and technology and describes some of the experimental techniques which are used to study band structure today. In order to leave space for recent developments, the Drude model and the introduction of quantum statistics are treated synoptically. However, Bloch's theorem and two tractable limits, a very weak periodic potential and the tight-binding model, are developed rigorously and in three dimensions. Having introduced the ideas of bands, effective masses and holes, semiconductor and metals are treated in some detail, along with the newer ideas of artificial structures such as super-lattices and quantum wells, layered organic substances and oxides. Some recent `hot topics' in research are covered, e.g. the fractional Quantum Hall Effect and nano-devices, which can be understood using the techniques developed in the book. In illustrating examples of e.g. the de Haas-van Alphen effect, the book focuses on recent experimental data, showing that the field is a vibrant and exciting one. References to many recent review articles are provided, so that the student can conduct research into a chosen topic at a deeper level. Several appendices treating topics such as phonons and crystal structure make the book self-contained introduction to the fundamentals of band theory and electronic properties in condensed matter physic today.

    • Science

The Physics of Instabilities in Solid State Electron Devices


Author: Harold L. Grubin,V.V. Mitin,E. Schöll,M.P. Shaw
Publisher: Springer Science & Business Media
ISBN: 1489923446
Category: Science
Page: 468
View: 2918
The past three decades have been a period where useful current and voltage instabilities in solids have progressed from exciting research problems to a wide variety of commercially available devices. Materials and electronics research has led to devices such as the tunnel (Esaki) diode, transferred electron (Gunn) diode, avalanche diodes, real-space transfer devices, and the like. These structures have proven to be very important in the generation, amplification, switching, and processing of microwave signals up to frequencies exceeding 100 GHz. In this treatise we focus on a detailed theoretical understanding of devices of the kind that can be made unstable against circuit oscillations, large amplitude switching events, and in some cases, internal rearrangement of the electric field or current density distribution. The book is aimed at the semiconductor device physicist, engineer, and graduate student. A knowledge of solid state physics on an elementary or introductory level is assumed. Furthermore, we have geared the book to device engineers and physicists desirous of obtaining an understanding substantially deeper than that associated with a small signal equivalent circuit approach. We focus on both analytical and numerical treatment of specific device problems, concerning ourselves with the mechanism that determines the constitutive relation governing the device, the boundary conditions (contact effects), and the effect of the local circuit environment.

    • Science

Solid State Theory


Author: Walter A. Harrison
Publisher: Courier Corporation
ISBN: 0486152235
Category: Science
Page: 576
View: 7511
DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div

    • Science

Physics of Condensed Matter


Author: Prasanta Misra
Publisher: Academic Press
ISBN: 9780123849557
Category: Science
Page: 688
View: 3713
Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book begins with a clear, coherent picture of simple models of solids and properties and progresses to more advanced properties and topics later in the book. It offers a comprehensive account of the modern topics in condensed matter physics by including introductory accounts of the areas of research in which intense research is underway. The book assumes a working knowledge of quantum mechanics, statistical mechanics, electricity and magnetism and Green's function formalism (for the second-semester curriculum). Covers many advanced topics and recent developments in condensed matter physics which are not included in other texts and are hot areas: Spintronics, Heavy fermions, Metallic nanoclusters, Zno, Graphene and graphene-based electronic, Quantum hall effect, High temperature superdonductivity, Nanotechnology Offers a diverse number of Experimental techniques clearly simplified Features end of chapter problems

    • Science

Ultrasonic Methods in Solid State Physics


Author: Rohn Truell,Charles Elbaum,Bruce B. Chick
Publisher: Academic Press
ISBN: 148327599X
Category: Science
Page: 478
View: 6206
Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techniques of ultrasonic pulse echo measurements, and the physics of ultrasonically measurable properties of solids. It is hoped that this book will provide the reader with the special background necessary to read critically the many research papers and special articles concerned with the use of ultrasonic methods in solid state physics. The book is intended to help the person beginning work in this field. At the same time, it will also be useful to those actively involved in such work. An attempt has been made to provide a fairly general and unified treatment suitable for graduate students and others without extensive experience.