• Mathematics

The Princeton Companion to Applied Mathematics


Author: Nicholas J. Higham
Publisher: Princeton University Press
ISBN: 1400874475
Category: Mathematics
Page: 1016
View: 3454
This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index

    • Algebra

Princeton Companion to Applied Mathematics


Author: Nicholas J. Higham
Publisher: N.A
ISBN: 9780691150390
Category: Algebra
Page: 1040
View: 4762
This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index

    • Mathematics

The Princeton Companion to Mathematics


Author: Timothy Gowers,June Barrow-Green,Imre Leader
Publisher: Princeton University Press
ISBN: 9781400830398
Category: Mathematics
Page: 1056
View: 3854
This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors incude: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, Doron Zeilberger

    • Mathematics

Mathematics


Author: Timothy Gowers
Publisher: Sterling Publishing Company, Inc.
ISBN: 9781402768972
Category: Mathematics
Page: 180
View: 1879
Mathematics is a subject we are all exposed to in our daily lives, but one that many of us fear. Timothy Gowers’s entertaining overview of the topic explains the differences between what we learn at school and advanced mathematics, and helps the math phobic emerge with a clearer understanding of such paradoxical-sounding concepts as “infinity,” “curved space,” and “imaginary numbers.” From basic ideas to philosophical queries to common sociological questions about the mathematical community, this book unravels the mysteries of space and numbers.

    • Science

Mathematics for Physics

A Guided Tour for Graduate Students
Author: Michael Stone,Paul Goldbart
Publisher: Cambridge University Press
ISBN: 1139480618
Category: Science
Page: N.A
View: 1584
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

    • Mathematics

X and the City

Modeling Aspects of Urban Life
Author: John A. Adam
Publisher: Princeton University Press
ISBN: 1400841690
Category: Mathematics
Page: 336
View: 7307
X and the City, a book of diverse and accessible math-based topics, uses basic modeling to explore a wide range of entertaining questions about urban life. How do you estimate the number of dental or doctor's offices, gas stations, restaurants, or movie theaters in a city of a given size? How can mathematics be used to maximize traffic flow through tunnels? Can you predict whether a traffic light will stay green long enough for you to cross the intersection? And what is the likelihood that your city will be hit by an asteroid? Every math problem and equation in this book tells a story and examples are explained throughout in an informal and witty style. The level of mathematics ranges from precalculus through calculus to some differential equations, and any reader with knowledge of elementary calculus will be able to follow the materials with ease. There are also some more challenging problems sprinkled in for the more advanced reader. Filled with interesting and unusual observations about how cities work, X and the City shows how mathematics undergirds and plays an important part in the metropolitan landscape.

    • Mathematics

The Nature of Mathematical Modeling


Author: Neil A. Gershenfeld
Publisher: Cambridge University Press
ISBN: 9780521570954
Category: Mathematics
Page: 344
View: 8857
This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.

    • Mathematics

Algebraic Curves over a Finite Field


Author: J. W.P. Hirschfeld,G. Korchmáros,F. Torres
Publisher: Princeton University Press
ISBN: 1400847419
Category: Mathematics
Page: 744
View: 4579
This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.

    • Mathematics

Applied Mathematics for Engineers and Physicists

Third Edition
Author: Louis A. Pipes,Lawrence R. Harvill
Publisher: Courier Corporation
ISBN: 0486794997
Category: Mathematics
Page: 1040
View: 3049
Suitable for advanced courses in applied mathematics, this text covers analysis of lumped parameter systems, distributed parameter systems, and important areas of applied mathematics. Answers to selected problems. 1970 edition.

    • Mathematics

The Mathematics of Egypt, Mesopotamia, China, India, and Islam

A Sourcebook
Author: Victor J. Katz
Publisher: Princeton University Press
ISBN: 9780691114859
Category: Mathematics
Page: 685
View: 5504
In recent decades it has become obvious that mathematics has always been a worldwide activity. But this is the first book to provide a substantial collection of English translations of key mathematical texts from the five most important ancient and medieval non-Western mathematical cultures, and to put them into full historical and mathematical context. The Mathematics of Egypt, Mesopotamia, China, India, and Islam gives English readers a firsthand understanding and appreciation of these cultures' important contributions to world mathematics. The five section authors--Annette Imhausen (Egypt), Eleanor Robson (Mesopotamia), Joseph Dauben (China), Kim Plofker (India), and J. Lennart Berggren (Islam)--are experts in their fields. Each author has selected key texts and in many cases provided new translations. The authors have also written substantial section introductions that give an overview of each mathematical culture and explanatory notes that put each selection into context. This authoritative commentary allows readers to understand the sometimes unfamiliar mathematics of these civilizations and the purpose and significance of each text. Addressing a critical gap in the mathematics literature in English, this book is an essential resource for anyone with at least an undergraduate degree in mathematics who wants to learn about non-Western mathematical developments and how they helped shape and enrich world mathematics. The book is also an indispensable guide for mathematics teachers who want to use non-Western mathematical ideas in the classroom.

    • Science

Methods of Mathematical Physics, Volume 2

Differential Equations
Author: Richard Courant,D. Hilbert
Publisher: John Wiley & Sons
ISBN: 3527617248
Category: Science
Page: 852
View: 6323
Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.

    • Science

Why Is There Philosophy of Mathematics At All?


Author: Ian Hacking
Publisher: Cambridge University Press
ISBN: 1107729823
Category: Science
Page: 212
View: 3901
This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices - responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities.

    • Business & Economics

Oxford Users' Guide to Mathematics


Author: Eberhard Zeidler
Publisher: Oxford University Press
ISBN: 9780198507635
Category: Business & Economics
Page: 1284
View: 3789
The Oxford Users' Guide to Mathematics is one of the leading handbooks on mathematics available. It presents a comprehensive modern picture of mathematics and emphasises the relations between the different branches of mathematics, and the applications of mathematics in engineering and the natural sciences. The Oxford User's Guide covers a broad spectrum of mathematics starting with the basic material and progressing on to more advanced topics that have come to the fore in the last few decades. The book is organised into mathematical sub-disciplines including analysis, algebra, geometry, foundations of mathematics, calculus of variations and optimisation, theory of probability and mathematical statistics, numerical mathematics and scientific computing, and history of mathematics. The book is supplemented by numerous tables on infinite series, special functions, integrals, integral transformations, mathematical statistics, and fundamental constants in physics. It also includes a comprehensive bibliography of key contemporary literature as well as an extensive glossary and index. The wealth of material, reaching across all levels and numerous sub-disciplines, makes The Oxford User's Guide to Mathematics an invaluable reference source for students of engineering, mathematics, computer science, and the natural sciences, as well as teachers, practitioners, and researchers in industry and academia.

    • Mathematics

Mathematics

Its Content, Methods and Meaning
Author: A. D. Aleksandrov,A. N. Kolmogorov,M. A. Lavrent’ev
Publisher: Courier Corporation
ISBN: 0486157873
Category: Mathematics
Page: 1120
View: 8655
Major survey offers comprehensive, coherent discussions of analytic geometry, algebra, differential equations, calculus of variations, functions of a complex variable, prime numbers, linear and non-Euclidean geometry, topology, functional analysis, more. 1963 edition.

    • Mathematics

Encyclopedia of Mathematics


Author: James Stuart Tanton
Publisher: Infobase Publishing
ISBN: 1438110081
Category: Mathematics
Page: 577
View: 8489
Encyclopedia of Mathematics is a comprehensive one-volume encyclopedia designed for high school through early college students. More than 1,000 entries, numerous essays, and more than 125 photographs and illustrations cover the principal areas and issues that characterize this "new" area of science. This valuable resource unites disparate ideas and provides the meaning, history, context, and relevance behind each one. The easy-to-use format makes finding straightforward and natural answers to questions within arithmetic simple. Encyclopedia of Mathematics also gives historical context to mathematical concepts, with entries discussing ancient Arabic, Babylonian, Chinese, Egyptian, Greek, Hindu, and Mayan mathematics, as well as entries providing biographical descriptions of important people in the development of mathematics.

    • Computers

Bitcoin and Cryptocurrency Technologies

A Comprehensive Introduction
Author: Arvind Narayanan,Joseph Bonneau,Edward Felten,Andrew Miller,Steven Goldfeder
Publisher: Princeton University Press
ISBN: 1400884152
Category: Computers
Page: 336
View: 4845
Bitcoin and Cryptocurrency Technologies provides a comprehensive introduction to the revolutionary yet often misunderstood new technologies of digital currency. Whether you are a student, software developer, tech entrepreneur, or researcher in computer science, this authoritative and self-contained book tells you everything you need to know about the new global money for the Internet age. How do Bitcoin and its block chain actually work? How secure are your bitcoins? How anonymous are their users? Can cryptocurrencies be regulated? These are some of the many questions this book answers. It begins by tracing the history and development of Bitcoin and cryptocurrencies, and then gives the conceptual and practical foundations you need to engineer secure software that interacts with the Bitcoin network as well as to integrate ideas from Bitcoin into your own projects. Topics include decentralization, mining, the politics of Bitcoin, altcoins and the cryptocurrency ecosystem, the future of Bitcoin, and more. An essential introduction to the new technologies of digital currency Covers the history and mechanics of Bitcoin and the block chain, security, decentralization, anonymity, politics and regulation, altcoins, and much more Features an accompanying website that includes instructional videos for each chapter, homework problems, programming assignments, and lecture slides Also suitable for use with the authors' Coursera online course Electronic solutions manual (available only to professors)

    • Mathematics

Nonplussed!

Mathematical Proof of Implausible Ideas
Author: Julian Havil
Publisher: Princeton University Press
ISBN: 9781400837380
Category: Mathematics
Page: 216
View: 2491
Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!--a delightfully eclectic collection of paradoxes from many different areas of math--popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles.

    • Mathematics

Stability, Instability and Chaos

An Introduction to the Theory of Nonlinear Differential Equations
Author: Paul Glendinning
Publisher: Cambridge University Press
ISBN: 9780521425667
Category: Mathematics
Page: 388
View: 4107
An introduction to nonlinear differential equations which equips undergraduate students with the know-how to appreciate stability theory and bifurcation.

    • Mathematics

Mathematical Methods in Biology


Author: J. David Logan,William Wolesensky
Publisher: John Wiley & Sons
ISBN: 0470525878
Category: Mathematics
Page: 417
View: 7121
A one–of–a–kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book′s algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem–solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class–tested to ensure an easy–to–follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper–undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.